An Error Estimate for Viscous Approximate Solutions of Degenerate Parabolic Equations

نویسندگان

  • STEINAR EVJE
  • KENNETH H. KARLSEN
چکیده

where QT = R d×(0, T ) with T > 0 fixed, u : QT → R is the sough function, V : R → R is a (not necessarily divergence free) velocity field, f : R → R is the convective flux function, and A : R → R is the “diffusion” function. For the diffusion function the basic assumption is that A(·) is nonincreasing. This condition implies that (1.1) is a (strongly) degenerate parabolic problem. For example, the hyperbolic equation ∂tw + div ( V (x)f(w) ) = 0 is a special case of (1.1). Problems such as (1.1) occur in several important applications. We

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L1–framework for Continuous Dependence and Error Estimates for Quasilinear Anisotropic Degenerate Parabolic Equations

We develop a general L–framework for deriving continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations with the aid of the Chen-Perthame kinetic approach [9]. We apply our L–framework to establish an explicit estimate for continuous dependence on the nonlinearities and an optimal error estimate for the vanishing anisotropic viscosity method, without t...

متن کامل

L–framework for Continuous Dependence and Error Estimates for Quasilinear Anisotropic Degenerate Parabolic Equations

We develop a general L1–framework for deriving continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations with the aid of the Chen-Perthame kinetic approach [9]. We apply our L1–framework to establish an explicit estimate for continuous dependence on the nonlinearities and an optimal error estimate for the vanishing anisotropic viscosity method, without...

متن کامل

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

Unique continuation and approximate controllability for a degenerate parabolic equation

This paper studies unique continuation for weakly degenerate parabolic equations in one space dimension. A new Carleman estimate of local type is obtained to deduce that all solutions that vanish on the degeneracy set, together with their conormal derivative, are identically equal to zero. An approximate controllability result for weakly degenerate parabolic equations under Dirichlet boundary c...

متن کامل

A Convergence Rate for Semi-discrete Splitting Approximations for Degenerate Parabolic Equations with Source Terms

We study a semi-discrete splitting method for computing approximate viscosity solutions of the initial value problem for a class of nonlinear degenerate parabolic equations with source terms. It is fairly standard to prove that the semi-discrete splitting approximations converge to the desired viscosity solution as the splitting step ∆t tends to zero. The purpose of this paper is, however, to c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007